Comparative genomics of Pseudomonas syringae pv. syringae strains B301D and HS191 and insights into intrapathovar traits associated with plant pathogenesis

نویسندگان

  • Aravind Ravindran
  • Neha Jalan
  • Joshua S Yuan
  • Nian Wang
  • Dennis C Gross
چکیده

Pseudomonas syringae pv. syringae is a common plant-associated bacterium that causes diseases of both monocot and dicot plants worldwide. To help delineate traits critical to adaptation and survival in the plant environment, we generated complete genome sequences of P. syringae pv. syringae strains B301D and HS191, which represent dicot and monocot strains with distinct host specificities. Intrapathovar comparisons of the B301D (6.09 Mb) and HS191 (5.95 Mb plus a 52 kb pCG131 plasmid) genomes to the previously sequenced B728a genome demonstrated that the shared genes encompass about 83% of each genome, and include genes for siderophore biosynthesis, osmotolerance, and extracellular polysaccharide production. Between 7% and 12% of the genes are unique among the genomes, and most of the unique gene regions carry transposons, phage elements, or IS elements associated with horizontal gene transfer. Differences are observed in the type III effector composition for the three strains that likely influences host range. The HS191 genome had the largest number at 25 of effector genes, and seven effector genes are specific to this monocot strain. Toxin production is another major trait associated with virulence of P. syringae pv. syringae, and HS191 is distinguished by genes for production of syringopeptin SP25 and mangotoxin.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genome and Transcriptome Sequences of Pseudomonas syringae pv. syringae B301D-R

Strains of the plant pathogen Pseudomonas syringae are commonly found in the phylosphere and are able to infect a number of agriculturally important crops. Here, we report a high-quality draft genome sequence of Pseudomonas syringae pv. syringae B301D-R, isolated from pears, which is a model strain for phytotoxin research in P. syringae.

متن کامل

Comparative genomics-guided loop-mediated isothermal amplification for characterization of Pseudomonas syringae pv. phaseolicola.

AIMS To design and evaluate a loop-mediated isothermal amplification (LAMP) protocol by combining comparative genomics and bioinformatics for characterization of Pseudomonas syringae pv. phaseolicola (PSP), the causal agent of halo blight disease of bean (Phaseolus vulgaris L.). METHODS AND RESULTS Genomic sequences of Pseudomonas syringae pathovars, P. fluorescens and P. aeruginosa were anal...

متن کامل

PCR Detection of Cyclic Lipodepsinonapeptide-Producing Pseudomonas syringae pv. syringae and Similarity of Strains.

Many strains of Pseudomonas syringae pv. syringae produce one of four classes of small cyclic lipodepsinonapeptides: syringomycins, syringostatins, syringotoxins, or pseudomycins. These metabolites are phytotoxic and growth inhibitory against a broad spectrum of fungi. Their production is dependent upon the expression of conserved biosynthesis and export genes syrB and syrD, respectively. PCR a...

متن کامل

Bioinformatics Analysis of the Complete Genome Sequence of the Mango Tree Pathogen Pseudomonas syringae pv. syringae UMAF0158 Reveals Traits Relevant to Virulence and Epiphytic Lifestyle.

The genome sequence of more than 100 Pseudomonas syringae strains has been sequenced to date; however only few of them have been fully assembled, including P. syringae pv. syringae B728a. Different strains of pv. syringae cause different diseases and have different host specificities; so, UMAF0158 is a P. syringae pv. syringae strain related to B728a but instead of being a bean pathogen it caus...

متن کامل

Comparative genomics of host-specific virulence in Pseudomonas syringae.

While much study has gone into characterizing virulence factors that play a general role in disease, less work has been directed at identifying pathogen factors that act in a host-specific manner. Understanding these factors will help reveal the variety of mechanisms used by pathogens to suppress or avoid host defenses. We identified candidate Pseudomonas syringae host-specific virulence genes ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2015